
~ Pergamon

Int. 1. Solids Structures Vol. 35, Nos 2&~27, pp. 3497-3517. 1998
(G; 1998 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0020-7683/98 $19.00 + .00

PII:SOO2o-7683(97)OO213-8

A THREE-DIMENSIONAL VISCOELASTIC
CONSTITUTIVE MODEL FOR PARTICULATE

COMPOSITES WITH GROWING DAMAGE AND ITS
EXPERIMENTAL VALIDATION

K. HAt and R. A. SCHAPERY*
Department of Aerospace Engineering and Engineering Mechanics, The University of Texas

at Austin, Austin, Texas 78712. U.S.A.

(Received 12 December 1996; in revised form 21 July 1997)

Abstract-A relatively simple nonlinear viscoelastic constitutive model for particle-filled rubber
under three-dimensional stress states is developed from an existing axisymmetric constitutive equa­
tion and then experimentally verified. In extending the existing model to three dimensions, it is
assumed that the damage leads to transverse isotropy with the axis of isotropy coinciding with the
local, instantaneous maximum principal stress direction for monotonic loading. Rate-type evolution
laws are used to account for the time-dependent changes in damage, and viscoelasticity ofthe rubber
matrix is explicitly taken into account by using so-called pseudo variables; although strains may be
large, in this theory rotations must be small. The model has been implemented in a finite element
analysis to account for various geometry and loading conditions. Experiments were used to check
the model. Various biaxial specimens of different aspect ratios, with and without holes or cracks.
were tested with different cross-head rates. Load-deformation information reveal good agreement
between theory and experiments, which is far better than using linear theory. A computer code based
on the digital image correlation method has been developed and refined for accurate experimental
displacement data extraction. The displacement field was further processed with a smoothmg
program for noise reduction. The specimen surface strain distribution is compared to predictions
from theory. Nonlinear theory shows better agreement with experimental strain fields than linear
theory. ~ 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The nonlinear behavior of filled rubber, such as that used for solid propellant, tires and
numerous other commercial rubber products, has been studied extensively over many years.
Solid propellant, the type of composite investigated in this paper, commonly consists of a
soft rubber matrix which is highly filled with hard particles of varying sizes (typically 10­
200 microns). The material used in the research was provided by the Naval Weapons
Center, and is an inert solid propellant with 70% volume of aluminum, potassium sulfate,
and ammonium sulfate embedded in a lightly-crosslinked HTPB (Hydroxyl-Terminated
Poly-Butadiene) rubber binder; it was specially compounded to closely simulate the non­
linear behavior of a live propellant. The size of particles ranges from 20-200 microns.

The mechanical behavior of propellant is complicated due to the effects of damage
growth, viscoelasticity, as well as the possibility of anisotropy and chemical aging. Even
when there are small overall strains, they cause non-linear behavior due to large local stress
concentrations in the matrix which, in turn, lead to microcracks. That microcracks initiate
and grow in filled rubber under mechanical loading is relatively well established; for
example Farris (1968), Farris et al. (1971) observed specimen dilatation that comes from
crack or vacuole formation between the matrix and particles or in the matrix. The amount
of dilatation depends not only on the amount of straining, but also on the type of multiaxial
loading (axiality), loading rate and temperature.

The problem of developing a realistic mathematical model of the mechanical behavior
of highly filled rubber is a difficult one, especially for three- dimensional constitutive
relations that can be implemented in a structural analysis using, for example, a finite element
code. Superimposed pressure effect (Davis, 1994; Farris, 1968), nonlinear viscoelastic
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response (Farris et al., 1975; Gazonas, 1993), chemical aging (Davis, 1995; Zhou, 1993),
micromechanics (Schapery, 1974, 1986, 1991), thermal-mechanical interaction (Hufferd.
1980), the Mullin's effect (Mullins, 1969), and a multiple integral approach (Lai and
Findley, 1973), have all been used in the establishment of constitutive models to account
for complex behavior of filled rubber composite.

For development of constitutive models for solid propellant, see Farris et al. (1975),
Simo (1987), Peng (1993a, b), Swanson and Christensen (1983), Schapery (1982, 1987,
1991), Park and Schapery (1997) and Oztipek and Becker (1992). Schapery (1987, 1991)
developed a multiaxial nonlinear damage model based on thermodynamics and work
potential theory for deformation behavior of particle-filled rubber. This model, which is
based on nonequilibrium thermodynamics with internal state variables. was developed to
accommodate general three-dimensional loading conditions and then was compared to
propellant behavior without significant viscoelastic effects. Recently, a specific constitutive
model, which includes the effect of viscoelasticity and time dependent changes in micro­
structure (such as microcracking) on overall stress-strain behavior, was developed and
experimentally verified on inert solid propellant under axial straining and pressure by Park
and Schapery (1997). The study included the effect of strain rate, pressure and temperature
on the mechanical behavior. The particulate composite with damage was modeled as a
homogenized, transversely isotropic continuum.

Although the nonlinear viscoelastic behavior of solid propellant has been recognized
for many years, only recently has a structural analysis become computationally practical.
Springfield et al. (1993) have evaluated the utility ofPeng's constitutive law in the ABAQUS
(Hibbit et al.. 1992) finite element code; it was successful up to 6% strain level in obtaining
a convergent solution for a series of Jet Propulsion Laboratory biaxial tests. Simo (1987)
used his model in a two-dimensional finite element analysis for a rectangular strip in plane
strain clamped on both ends, but the results were not verified by experiments. Laheru
(1995) used a piecewise-in-time linear elastic model to approximate nonlinear viscoelastic
behavior. He assumed the nonlinear viscoelastic behavior of the propellant is due to the
irreversible load-induced microstructural damage accumulation, and a damage measure
was defined by the so-called Lebesgue norm of an increasing stress or strain function. Also,
the instantaneous secant modulus and effective Poisson's ratio were defined from the
combined uniaxial and equal-biaxial data for each linear elastic problem with the time
variable frozen; but the effect of the damage orientation was not taken into consideration.
Collingwood et al. (1995) evaluated nonlinear cumulative damage constitutive theories for
solid propellant, such as those ofOziipek, Swanson and Laheru and hyperelastic models
such as those of Mooney, Rivlin, Ogden and Peng; most allow for large deformations.
They used nonlinear viscoelastic analysis in the finite element analyses of analog wedge,
biaxial rail, and equal-biaxial specimens. Also, they conducted tests of two subscale motors
to validate the most promising approaches in a motor-like analog.

The objective of this paper is to extend Park and Schapery's (1997) constitutive model
for axisymmetric deformation to a general three-dimensional state and assess its validity
using reaction loads and local strain distributions in thin and thick plates, with and without
holes or cracks, subjected to different strain rates. The viscoelastic constitutive equation is
relatively simple and, in contrast to other available equations, permits the use of elastic
analysis by means of an easily applied correspondence principle (Schapery, 1984). The
theory is limited to small rotations but not to small strains.

2. CONSTITUTIVE MODEL FOR GENERAL THREE-DIMENSIONAL LOADING

In developing the multi axial constitutive theory from the model for axisymmetric
deformation, Schapery's (1991) work potential theory, combined with his micromechanical
model, is used as a guide. For a viscoelastic material with general three-dimensional loading
and with growing damage, we can always obtain three principal stresses and their directions.
One basic assumption is that, with distributed damage, the composite body is locally
transversely isotropic with the axis of symmetry oriented in the current local maximum
principal stress direction, as suggested by Schapery (1991). We also assume the composite



A 3-D model for particulate composites 3499

is isotropic in the absence of damage. It is further assumed that the composite is linearly
elastic or viscoelastic for a fixed amount of damage. For an elastic composite with this type
of oriented damage, the principal axes of stress and strain are aligned. The elastic strain
energy density for transversely isotropic materials can always be written in the form
(Schapery,1986),

(I)

where X3 is the axis of material symmetry and, in terms of the strain tensor Gi"

e2 == G22 -Gil, e3 == G33 -ev/3, ev == Gil +G22 +G33

}'12 == 2G12, }'23 == 2G2" }'13 == 2G13'

The five coefficients Ail are the elastic moduli which depend upon the state of damage.
Inasmuch as X3 is the maximum principal strain or stress direction, W in (I) is reduced to
W' (say) in terms of principal strains; thus, with }'13 = }'23 = }'12 = 0,

(2)

which is seen to be independent of A44 . The stress-strain equations may be expressed
for principal stresses by taking principal strains G1 == Gil' G2 == G22, G3 == G33 as independent
variables. Thus,

oW
<Ii = --;;--- (i = I, 2, 3).

CGi

Explicitly, the principal stresses are,

(3)

(4)

In general, the axis of isotropy will not be parallel to an axis in the global coordinate
system used to represent the local strains in a structural analysis. In order to allow for an
arbitrary orientation, write

du; = G[ dx; (no sum on i) (5)

where Gj are the principal strains (assumed small for now) referred to principal strain
directions, x;. The relationship between the strains Gpq the global reference coordinate system
and local material coordinates is given by the usual second-order tensor transformation
law,

(6)

where mij is the cosine of the angle between x; and Xi axes. Substitution of Gj from (6) into
(2) leads to W' in terms of Gpq'

The previously developed constitutive model (Park and Schapery, 1997), using the
same inert propellant as -here, for uniaxial specimens under axial strain G and confining
pressure p is adopted here and modified as necessary. Details of the characterization process
are given elsewhere (Park, 1994), including a refinement of the method of identifying the
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Table I. Analytical expressions for the material functions (primary
units are pounds, inches, seconds)

CII (S,) = 2310-869· S:/S + 1679· silS -2000 ·SIIS + 561 . S~iS
C'2(S,) = 0.0744' Si l2 +0.0333· S, -0.00248· SI/2
C22 (S,) = -1.705.10- 5 • S:/2 -1.544.10- 5 • S, -1.109.10- 5 • sl,2
qs,) = 1+0.0925· siiS -0.373· Slls +0.07405' SJI5

material parameters (Park et al., 1996). For the moment, let us give the elastic version of
this model with damage; extension to a viscoelastic body will be given later:

Dual Energy Density Function:

Stress-Strain Relations:

oWn
(J == & = CII (SI)C(S2)e+CI2(SI)P

aWn
ev = ----ap = C 12 (SI)e+C22 (SI)P,

Internal State Evolution Law:

(7)

(8)

(9)

where am's are constants and the overdot denotes a time derivative. The two internal state
variable (ISVs) SI and S2 account for changes in internal structure, such as microcracking
and disentanglement of polymer chains (which we call "damage").

In order to determine Au in (2) in terms of previously determined material functions
Cu's (8) can be used to obtain stress-strain relationships in the form in (4). A comparison
of (4) and (8) leads to the A;/s in terms of C;/s, except for A 66 ,

in which

A = ell +~E(I_ C1 2
)

12 3 Cn 3' (10)

(II)

Here Ci;(Sd (i,j = 1,2) and C(S2) are material functions determined from the charac­
terization processes for the case of a specimen under axial strain e and pressure p. A
summary of the material functions is in Table I. It is noted that some constants in the
material functions in the table were slightly modified from those in Park's original equations.
A 7% error in the cross-sectional area measurement and aging due to the time gap of a few
years between the two sets of tests are believed to be the sources of the difference (Ha,
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Fig. I. Predictions and experimental results for uniaxial tests.

1996). Figure 1 gives the comparison between stress-strain curves of uniaxial tension tests
and predictions of the previous constitutive equations and modified equations for two
different strain rates. It may be observed that the previous constitutive equations predict
about 15% lower maximum stress than the new experimental values. The average of at
least three specimens per condition is shown.

The shear modulus A66 used in (2) was found by Schapery (1991) from a micro­
mechanical model to be relatively insensitive to microcracking, the thus we shall use the
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shear modulus in the undamaged state. Since the undamaged material can be regarded as
an incompressible isotropic material,

(12)

As further support for (12), we have checked for possible sensitivity of the reaction load to
A66 in the three-dimensional analysis. Using 90% of the A 66 in (12), a specimen without a
hole or a crack was analyzed using finite element analysis. The peak load changed by only
0.3% with this 10% reduction in A66 .

To accommodate viscoelasticity of the matrix, and thermorheological simplicity in its
temperature dependence, the extension to viscoelasticity is accomplished by replacing the
strains etj in an elastic formulation with pseudo strains eB defined by,

(13)

Here E(~) is relaxation modulus, ER is termed reference modulus which is a free constant
with the same dimension as the relaxation modulus, ~ is the so-called reduced time and is
defined as

(14)

and aT = aTeT) is a material function of temperature. This replacement with pseudo strains
was justified by Schapery (1981) with and without growing damage. The resulting consti­
tutive equations and internal state evolution laws for the viscoelastic model under general
three-dimensional loading are like those given above, but notation for principal pseudo
strains is used: .

Pseudo Strain Density Energy Function:

where e~ = e~-ef, e~ = e~-e~/3 and e~ = ef+ef+e~.

Stress-Strain Relations:

0"1 = (All-~AI2)e~+(AI2-~A22)e~+A66ef

0"2 = (All-~AI2)e~+(AI2-~A22)e~-A66ef

(16)

Internal State Evolution Law:

(17)

where (XI = 6 and (X2 = 4.5 for our material.
Thermal expansion may be easily included (Schapery, 1981). Here, we observe only

that if it is independent of temperature history, then one replaces the principal strains ei

inside the convolution integral (13) by ei - (Xil1 T, where 11 T is the temperature change and
the (Xi are the expansion coefficients; (XI = ':1.2 with transverse isotropy.
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3. LABORATORY EXPERIMENTS AND MODEL IMPLEMENTATION

3.1. Test program
The plate specimens employed were so-called biaxial strips. They were rectangular in

shape and bonded to relatively rigid aluminum grips on the upper and lower surfaces, as
illustrated in Fig. 2; note that an (x. y. z) global coordinate system (rather than Xi) is now
used. The specimens were cut from large, cast blocks; all specimen surfaces were machined
smooth. Some of our biaxial specimens were unflawed while others contained manufactured
defects, namely a centered circular hole or a centered through-crack. The thickness of some
of our biaxial specimens varied near the top and bottom bondlines resulting in an "1­
shape", as shown in the figure; unless noted otherwise, a constant thickness geometry is
used in the discussion in Section 4. The specimens were loaded in tension in an Instron
machine. Preliminary tests of biaxial specimens without the illustrated circular end cut-outs
or without an I-shape thickness revealed premature failure near the bondline between the
specimen and a grip due to the high stress concentrations. All specimens were tested in the
ambient laboratory environment for which aT = I and ~ T = O.

Two types of tensile tests, uniaxial tension tests using specimens as described by Park
and Schapery (1997) for verification and calibration of the previous constitutive model,
and biaxial strip tests were performed; the latter were used for evaluation of the three­
dimensional constitutive model. Four specimens were tested under each condition to obtain
the results in Fig. I. Among them, those showing a major deviation from the average curve
(usually due to large initial voids or aggregated particles) were discarded. Displacement
rates of I"/min and IO"/min were selected because they correspond to 0.36/min, 3.6/min
strain rates, which are located logarithmically at about mid points in the axial strain rates
ofO.l"/min, I"/min and lOn/min used in the biaxial strip tests.

The three-dimensional stressing effect in the biaxial strips was studied by changing the
thickness-to-height aspect ratio by using combinations of h = 0.6, I.e)" and B 0.2. 0.25,
0.3". Specimens of three different aspect ratios were tested, 1 : 2, I :4, I : 5, and the results
were compared with those of a plane stress condition. The effect of loading rate on the
viscoelastic response was also checked with the tests of 0.1"/min, I" /min and IO"/min cross­
head speed. For each strain rate, two biaxial specimens were tested; in a few cases the
specimen cracked prematurely, and thus was not used in the comparison of theory and
experiment. Table 2 lists the tests.

Biaxial strip specimens with holes or cracks were tested for comparison of experimental
and theoretical strain field distributions and reaction forces. A specimen with a hole creates
a moderate strain concentration around the perimeter of the hole, while a specimen with a
central through-crack provides severe strain concentration around the crack tips. which in
turn creates more damage and nonlinear behavior.

A strain analysis was performed on digitized images at 5 and 10% global strain level
for specimens with circular holes. The initiation of macrocrack growth occurred at either
side of the hole wall at about 11°;') global strain. Two specimens with a central through­
crack were tested under 0.1" (min displacement rate and images recorded at every 2'% global
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Table 2. Summary of tests results and predictions for reaction load

Defect ~ Aspect Max.loadt % Strain (%) at
Test name shape (/min) ratio* (lbs) Diff. max loadt

Test 40 0.1 0.2 137.0 (137.8) +0.6 11.9 (12.6)
Test 42 0.1 0.2 136.7 (137.8) +0.8 12.1 (12.6)
Test 45 0.1 0.2 135.4 (137.8) +1.7 12.7 (12.6)
Test 47 0.1 0.2 136.9 (137.8) +0.6 10.4 (12.6)
Test 48 1.0 0.2 160.5 (170.0) +5.6 12.8 (12.0)
Test 49 1.0 0.2 160.5 (170.0) +5.6 12.0 (12.0)
Test 44 10.0 0.2 196.8 (209.9) +6.2 9.1 (11.1)
Test 50 10.0 0.2 205.1 (209.9) +2.3 10.1 (lJ.l)
Test 30 0.1 0.25 165.5 (173.2) +4.4 10.3 (11.2)
Test 72 1.0 0.5 266.9 (263.8) -1.2 8.8 (10.3)
Test Hl Hole 0.1 0.25 161.5 (159.5) -1.2 10.4 (11.0)
Test H2 Hole 0.1 0.25 183.9 (169.7) -7.7 10.3 (10.9)
Test H3 Hole 0.1 0.25 163.0 (159.5) -2.1 11.7 (11.0)
Test H4 Hole 0.1 0.25 155.7 (149.5) -4.0 11.2 (11.0)
Test CIO Crack 0.1 0.25 135.8 (144.2) +5.8 9.1 (10.8)
Test CII Crack 0.1 0.25 137.0 (144.2) +5.0 8.7 (10.8)
Average +1.7

* Thickness-to-sheet height aspect ratio.
t Numbers in () represent finite element predictions.

strain increment. Crack growth was initiated somewhere between 6 and 8% global strain.
At 8% in the CII specimen, for example (see Table 2), about 0.13/1 total crack extension
was measured and 0.39/1 measured at a 10% global strain state. Since crack growth had
already developed at 8% global strain, the deformed image under 6% global strain was
selected for strain analysis and comparison with theory. Note that our prediction did not
account for crack growth.

The digital image correlation method (DICM) was used for measuring in-plane hori­
zontal and vertical displacement components, U and v, respectively. Details of the principle
and the data reduction scheme of DICM used in this study are given by Ha (1996). The
two-dimensional smoothing algorithm used was mainly that of Dohrmann and Busby
(1990). The algorithm uses Wahba's (1975) generalized cross validation (GCV) method to
determine the level of noise internally. After the smoothing parameter was determined, the
smoothed displacement outputs were assumed free of experimental noise. The small strain
(displacement gradient) measure was used.

The effects of out-of-plane displacement wand out-of-plane rotations w. x and w.)' on
the DICM algorithm were assumed negligible, guided by the result from Post et al. (1987)
for specimens with similar material and geometry. They used the shadow moire method for
w field determination for both 8 x 2 X 0.25/1 and 8 x 2 X 0.6/1 specimens and found that the
influence of w on in-plane strains was significant. Also, in a well-focused optical test set­
up, a significant amount of w displacement can be detected from careful monitoring of the
test specimen as well as from the test results; the image is blurred by the change in
depth-of-field due to out-of-plane displacement, especially for the tests under high lens
magnification. On the other hand, for problems where an influence of w is significant,
DICM extended for three-dimensional deformation measurement (Kahn-Zetter and Chu,
1990) may be employed. The smoothed displacement used two-dimensional cubic spline
functions; the strain outputs were directly available from the smoothed displacement
functions.

3.2. Implementation of the theoretical model
The solution of the elastic boundary value problem is determined from the iterative

procedures discussed in ABAQUS (Hibbit et al., 1993) for any kinematically admissible
displacement and strain functions. The implementation of user-defined constitutive
relations in the finite element analysis is described in the following steps for sufficiently
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small increments in pseudo grip displacement loading; this displacement is calculated from
the given physical displacement using an equation like (13) :

(I) Starting with a linear elastic isotropic analysis in terms of pseudo variables using a
small prescribed pseudo displacement increment, and specifying Young's modulus and
a Poisson's ratio slightly less than 0.5, determine the local pseudo strains.

(2) For trial pseudo strain functions, transform the local strains in a reference Cartesian
coordinate system (x, y, z) to an orthogonal coordinate system in the local principal
stress (or, equivalently, pseudo strain) directions (1,2,3) according to (6), and find
ef, ef and ef (maximum). Calculate e~, ef, ef and update WR

, which is a function of
solution values of St and Sz that are passed in from the previous incremental analysis.

(3) Evaluate the principal stresses using (16) and transform them back to the stresses in
(x, y, z) coordinate system. In the solution procedures in a problem with a user-defined
material in ABAQUS, six stress components and the thirty six components of incremen­
tal stiffness matrix, Cjj=(oa)oef) (i,j= 1,2, ... ,6) referred to (x,y,z) coordinate
system, should be provided for outputs from the user-subroutine. In our analysis, Cij
was calculated based on constant S/ to obtain a simple expression; in ABAQUS, the
incremental stiffness is mainly l,lsed for fast convergence of the solution (Hibbit et 01.,
1992).

(4) After finding the pseudo displacement functions which satisfy equilibrium equations in
a global sense within a small enough tolerance (usually 0.005 Ibs), use e,R, ef, ef and
WR from step 2 to find local increments of Sj and Sz from the damage evolution law
(17) and the associated time increment.

(5) Change all the pseudo variables into physical variables using the uniaxial creep com­
pliance. This step is illustrated in the Results and Discussion section.

(6) Increase the loading by an incremental boundary pseudo displacement and solve a new
elasticity problem at steps 2 and 3 and proceed to steps 4 and 5.

Note that the linear elastic material properties were selected for the material parameters
in step 1. The value of the uniaxial linear relaxation modulus at t = 1 s was arbitrarily used
for Young's modulus. This is the value adopted for the reference modulus ER , but a different
choice of modulus would not affect the viscoelastic solution. The Poisson's ratio of 0.499
was used in step 1; this value, rather than 0.5, was selected to be able to start the solution
without encountering numerical problems and to provide the nearly incompressible
behavior exhibited by propellant under small stresses. Numerical difficulties are also enco­
untered if zero damage (S. = Sz = 0) is used in the first increment as this corresponds to
incompressible behavior for the given material functions; this problem was avoided in step
I by arbitrarily using 0.001 for both ISVs.

Finite element models of a specimen with a 0.5" diameter hole and a specimen with I"
long center crack are shown in Fig. 3. For most cases, a one-eighth specimen was modeled
using the symmetry conditions with respect to the coordinate planes; for a few cases, a
one-quarter specimen was modeled for direct construction of surface strain contour maps.
For the thickness direction, two layers of elements were usually enough, which is the same
as four layers of elements without symmetry about the x-y plane. Some modification from
the meshes shown or more refined meshes were made as necessary. Twenty-noded, three­
dimensional continuum isoparametric elements with reduced integration were used to model
the three-dimensional specimens.

4. RESULTS AND DISCUSSION

4.1. Load prediction and comparison to experiment
Figures 4-6 show the reaction load results from the nonlinear analysis for 0.2" thickness

biaxial strip specimens with 0.1"Imin, 1"Imin and 10"Imin cross-head speeds, respectively.
In each figure, the solid line reflects the reaction force normalized with thickness predicted
from a full-three dimensional finite element analysis with the nonlinear constitutive model.
Each graph overlays both experimental results in symbols and predictions along with plane
stress and P-e analysis defined below.
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(al A Quarter Specimen with a Central Hole

(bl A Quarter Specimen with a Through Crack

Fig. 3. Examples oflinite element models used for the biaxial strip specimens.
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The P-e reaction predictions in the figures were calculated for R = LelfRpn where Rp-e

is a reaction of a cross-sectional area under a plane strain condition in the length direction
for a specimen of uniform thickness B and unit length. L elf is the effective length; L elf is
conveniently defined as L elf = Rhnear!O'infB where Rlmear is the reaction load from three­
dimensional linear elastic analysis with Poisson's ratio of 0.499 and O'inf is the linear elastic
axial stress for the infinitely long, thin strip with the same global strain and Poisson's ratio
as those in the three-dimensional analysis. Apparently, except for high strains. the plane
stress prediction provides a lower bound to a prediction from three-dimensional nonlinear
analysis, while the P-e prediction provides an upper bound; the closeness of the plane
stress and three-dimensional predictions is not surprising in view of the low specimen aspect
ratio. For zero strain specified in the thickness and length directions. the reaction in the
linear elastic analysis with Poisson's ratio of 0.499 is 125 times that of the plane stress case;
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with damage, the same trend as in the linear elastic analysis was found in the initial stage
of the reaction curve, but the reaction reaches a maximum value at less than I% global
strain due to the high constraint.

The comparison between theoretical predictions and experimental results generally
show good agreement. In almost all of the cases, the discrepancies increase after the peak
load; but it should be mentioned that those discrepancies are due to specimen failure from
strain localization in the form of local macrocracking, which eventually develops into a
large macrocrack. For most cases, the macrocrack initiated in the middle of the actual
biaxial strip; for a few cases, the crack initiated at one of the specimen's curved ends.
Separate macrocracks formed near the initial macrocrack and then interconnected to form
a dominant macrocrack. The macrocracks grew steadily and quasi-statically until the
specimens were in two pieces.

For all subsequent predictions we used a full three-dimensional finite element analysis,
accounting for spatial and timewise damage variations. In Fig. 7, the theoretical prediction
is compared to the experimental load-displacement curve for the biaxial strip specimen
with "I-shape" varying thickness. Figure 8 reveals the reaction comparison between the
prediction and the test for a specimen of uniform thickness with I : 2 thickness-to-height
aspect ratio. Three-dimensional analysis predicts the experimental load very closely up to
the maximum load before a macrocrack grows to produce global failure. Comparing this
with the reaction for a I: 5 aspect ratio in Fig. 5 for f. = 1.0 min-I to see the three­
dimensional effect, it is observed that the maximum theoretical and experimental loads in
Fig. 8 show only a slight increase, but the experimental strain at maximum load is noticeably
smaller in Fig. 8 than in Fig. 5. The closeness of the maximum loads, considering the
difference in thickness constraint, is not too surprising because the higher constraint at a
given strain produces more damage; as a direct indication of the differences in constraint,
it is found that the initial stiffness in Fig. 8 is 1.5 times that in Fig. 5.

The experimental reaction and prediction for a specimen with a center hole are given
in Fig. 9; it is noteworthy that the global response is not very sensitive to the hole, as may
be seen by comparing Figs 7 and 9. Figure 10 shows the reaction comparison between the
nonlinear prediction and test results for biaxial strip specimens with a 1" long central
through-crack. The crack growth initiated at the crack tip at the global applied strain of
less than 8%. The comparison is in a good agreement up to the point of crack growth
initiation.

The summary in Table 2 shows the percent difference between the tests and predictions
for load. Each specimen was tested to failure. A relatively big difference between the
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predictions and experiments for the strain at the peak load is primarily due to macrocrack
growth in the test specimens, which was not accounted for in the theory. It should be added
that the agreement between theory and experiment for all load-strain records is far better
than achieved by linear viscoelasticity theory; in this latter case, the load is nearly linear in
strain, matching the experimental data only at very small strains.

4.2. Determination ofstrain and displacement fields
Local experimental and theoretical strain comparison have been made to check the

quality of theoretical strain field predictions, including those outside the strain range of
uniaxial tests used for the material characterization. (In the uniaxial test, about 15% was
the available maximum axial strain under room temperature and ambient pressure.) The
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physical strain calculation can be done numerically from the pseudo strain solution, using
a piecewise constant pseudo strain rate approximation and the inverse of (13); e.g. with
aT = I,

I
, deR

e(t) = E R D(t-r) -ddr
o r

(18)

where D(t) is the creep compliance. It should be added that the quasi-elastic approximation
to (18), in which I; ~ EReR/E,(t), where E, is the constant-rate secant modulus, provides
quite accurate results (Ha, 1996) for all of our tests.

Numerous tests and analyses have been conducted for obtaining good experimental
strain and displacement distributions by calibrating and fine-tuning the experimental
methods, including the DIeM for strain analysis (Ha, 1996). Theoretically, it was found that
the strain distribution from a linear solution under the prescribed displacement boundary
condition is often quite close to that from the nonlinear solution of the problem with
a nonlinear constitutive equation. (Note also that from dimensional analysis the linear
viscoelastic strain distribution is the same as the linear elastic solution if the same dis­
placement boundary condition is prescribed and the Poisson's ratio is constant.) If the local
largest principal strain and its direction change during the loading due to nonuniform
damage evolution, the linear and nonlinear strain predictions show differences. Also,
because the damage doe not evolve much under small local strain, i.e. up to 5% or so, the
difference is small, especially for specimens without any manufactured flaw, i.e. a hole or a
crack. The subsequent discussion concerns specimens with a precut hole or crack. They all
have the I-shaped thickness profile in order to decrease the tendency for premature damage
localization close to the bondlines.

Example strain contour maps for 10% global strain are shown in Fig. 11 for a specimen
with a circular hole. The experimental strain contours show small local irregularities due
to material inhomogeneity. Figure 12 shows contour predictions from the finite element
analysis of the nonlinear model for 10% global strain. Both the linear and nonlinear
predictions are generally similar in shape except for some differences at the hole perimeter
regions; in Figs 11 and 12, the hole center is at (3.0,0.5) in the maps. The closer to the
hole, the discrepancies between linear and nonlinear analyses grow bigger. The nonlinear
model creates damage due to high strain concentrations near the hole. The maximum
principal strain becomes bigger from material softening due to damage growth; also, the
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local axis of material symmetry changes due to rotation of the maximum principal strain
direction. By and large, the nonlinear prediction lines match closely those from experiments,
though the theory is smoother and simpler in shape than those from experiments. Several
additional strain and displacement results are compared in Ha's study (1996).

It is informative to construct a section cut on the surface contour map for more direct
comparison. Horizontal displacement along a horizontal line and vertical strain along a
vertical line are used for the section plot comparison in Figs 13 and 14, respectively. The
vertical line cut was made in Figs II and 12 at 0.125" from the hole wall. Figure] 3 reveals
the horizontal displacement comparison along the mid-height horizontal line for 5% global
strain. A vertical strain section plot for 10% global is in Fig. 14. In this figure it is clear the
nonlinear model predicts the vertical strain better than the linear analysis; the somewhat
irregular strain variation near the top and bottom surfaces is due to the I-shaped thickness
variation.

Specimens H3 and H4 were mainly prepared for the study of the close-to-hole strain
field, and were intended to replicate the results under the same test environment and
conditions. The scanned area was centered at the hole center, and both sides of the specimen
from the hole center were used for DIeM analysis; four replica sets of strain data were
available from experiments. Figure IS presents section comparisons between predictions
and experiment for vertical strain. It should be noted that the section plot comparison is
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made from a left and right side vertical line cut through 0.05" from hole edge, which is the
closest line to the hole for the available strain data. It shows a clear distinction between the
predictions from the linear model and the nonlinear model. Also, the experimental results
are located closer to nonlinear predictions than linear predictions. The discrepancy between
experiment and nonlinear theory at the OS' position may be due in part to an experimental
factor, i.e. the data smoothing; note also that the strain is well above that used in the
characterization, as may be seen in Fig. 1. In Figure 16 the vertical strain predictions are
compared to the experimental results along the cut through vertical lines at 0.17" distance
from both crack tips. Both linear and nonlinear predictions give good agreement with
experiments; but it appears that the nonlinear prediction of maximum strain is at least
slightly better than the linear prediction.
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4.3. The effect ofgeometric nonlinearity
The constitutive equation used so far has been expressed in terms of pseudo strains

and displacements, and the problems we solved at a fixed time were elastic problems with
rate-dependent damage. There was no approximation in the conversion of the elastic
solution to the viscoelastic solution using the correspondence principle (Schapery, 1984).
Since this constitutive relation is based on data from an axially symmetric loading which
covered the primary strain ranges in the current experiments, the predictions should not
have significant error due to geometric nonlinearities if the local rotations are small when
displacement gradient is adopted for strain measure (Schapery, 1984). On the other hand,
the use of Green's strain measure can fully take care of finite strain and rotation effects,
but it creates error in the correspondence principle.
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To see if there is much geometrical1y nonlinear effect on the previous analysis, including
rigid body rotation effects, a few geometrically nonlinear analyses were performed and the
results were compared to those from geometrical1y linear analysis (Ha, 1996). As far as
strains are concerned, the pseudo strain distributions from the previous analysis are con­
sidered to be those from an elastic analysis, but the internal state changes according to the
damage evolution laws. The following study is concerned with the geometrically nonlinear
effect on the reaction load in an elasticity problem; i.e. we consider the pseudo strain to be
physicaJ strain. For specimens with and without a crack, the three-dimensional nonlinear
elastic constitutive relation which allows finite strains and rigid body rotations with damage
growth was formulated and computer-programmed.

Let us introduce Green's strain as,

(19)

where F is the deformation gradient tensor and I is identity tensor. The strain energy
function in (15) can be rewritten in terms of principal Green's strains using the relations
between principal Green's strains and engineering strains (displacement gradients) £p,

(20)

Next, principal second PioJa-Kirchhoff stresses Sp can be derived from

(21)

Figures 17 and 18 give the comparison of loads in the geometrically nonlinear and linear
analysis for a specimen without and with a one-inch center-through crack, respectively. The
maximum discrepancy in the reaction force is about 0.3 and 1.5%, respectively.

The experimental strain field provides a similar conclusion. For example, the initiation
of macrocrack growth in an initially cracked specimen started at relatively low global strain,
less than 8%. By inspection of scanned images at 8 and 10% global strain, the crack tip
opening angle retained almost the same low angle (i.e., self-similar crack growth) during
the continuation of the crack growth under 10% global strain. From the experimental
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study on the local rigid body rotation of the material points on the ClO specimen surface,
the only significant rigid body rotation was found to be limited to points very close to the
wake region of the current crack tip, with a maximum rotation of less than 10". Most other
data points indicated less than 1'" rotation.

The local strain distribution comparisons show very close agreement, with strains from
geometrically linear analysis being slightly higher than those from geometrically nonlinear
analysis (Ha, 1996). From a horizontal section plot along a line at 0.34" distance from a
crack in the unflawed body direction, the vertical strain difference was a maximum of about
3.7% of the strain itself. Thus, apart from points very close to crack tips or a hole (cf Fig.
15 at the center), it is concluded that there is little geometrically nonlinear effect in local
strain distribution predictions for the specimens used in the test program of the current
study.

5. CONCLUDING REMARKS

A nonlinear viscoelastic constitutive equation that is linear except for the effect of two
internal state variables, was shown to successfully describe the viscoelastic behavior of a
highly-filled, particulate composite with distributed damage using various biaxial strip
geometries under constant applied displacement rate. Specifically, the constitutive equation
was incorporated in a finite element model for analysis of these specimens. Both global
reaction load and surface strain predictions from the nonlinear viscoelastic model provided
good agreement with the experiments. The maximum load was predicted quite accurately
for specimens without pre-cut cracks, after which macrocracking initiated; in this context,
the theory is capable of predicting failure.

The three-dimensional nonlinear viscoelastic constitutive model can be conveniently
employed in analysis of three-dimensional structures under monotonically increasing strain­
ing conditions. For unloading and reloading and for cyclic loading, an experimentally
verified model exists that is based on pseudo strains, but it is presently limited to uniaxial
loading (Schapery, 1982). The current numerical approach is limited to small rigid body
rotation and small strain conditions. With finite strain effects, geometrically nonlinear
analysis with elastic or quasi-elastic analysis and rate-dependent damage can be readily
performed. The digital image correlation method we have used provides accurate surface
strain fields for specimens of highly filled rubber under plane deformations. The present
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version of this method may not give good results ifthere are large out-of-plane deformations
(Post et al., 1987), but it can be modified to account for them (Kahn-Zetter and Chu, 1990).
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